RIGIDITY OF COMMUTING AFFINE ACTIONS ON REFLEXIVE BANACH SPACES

CHRISTIAN ROSENDAL

ABSTRACT. We give a simple argument to show that if α is an affine isometric action of a product $G \times H$ of topological groups on a reflexive Banach space X with linear part π , then either $\pi(H)$ fixes a unit vector or $\alpha|_G$ almost fixes a point on X.

It follows that if π is an isometric linear representation of a topological group G on a reflexive space X such that $\pi(Z(G))$ has no fixed unit vectors, then the reduced cohomology vanishes, i.e., $\overline{H}^1(G, \pi) = 0$.

1. LINEAR REPRESENTATIONS AND COCYCLES

When X is a vector space, the group of bijective affine transformations of X, Aff(X), can be decomposed as a semidirect product

$$\operatorname{Aff}(X) = GL(X) \ltimes X,$$

with respect to the natural action of GL(X) on X. The product in $GL(X) \ltimes X$ is then simply $(T,x) \cdot (S,y) = (TS, Ty+x)$, while the corresponding action of $(T,x) \in GL(X) \ltimes X$ on X is given by $(T,x) \cdot y = Ty + x$.

Thus, an action α of a group *G* by affine transformations of the vector space *X* can be viewed as a homomorphism of *G* into Aff(*X*), which thus can be split into a linear representation $\pi: G \to GL(X)$, called the *linear part of* α , and an associated *cocycle* $b: G \to X$ such that the following *cocycle identity* holds,

$$b(gf) = \pi(g)b(f) + b(g),$$

for all $g, f \in G$.

If, moreover, X is a reflexive Banach space and $\pi: G \to GL(X)$ is a fixed isometric linear representation of a topological group G on X that is *strongly continuous*, i.e., such that for every $x \in X$ the map $g \in G \mapsto gx \in X$ is continuous, we can consider the corresponding vector space $Z^1(G,\pi)$ of continuous cocycles $b: G \to X$ associated to π . The subspace $B^1(G,\pi) \subseteq Z^1(G,\pi)$ consisting of those cocycles b for which the corresponding affine action α fixes a point on X, i.e., for which there is some $x \in X$ such that $b(g) = x - \pi(g)x$ for all $g \in G$, is called the set of *coboundaries*. Note that if b is a coboundary, then b(G) is a bounded subset of X. Conversely, if b(G) is a bounded set, then any orbit \mathcal{O} of the corresponding affine action is bounded and so, by reflexivity of X, its closed convex hull $C = \overline{\operatorname{conv}}(\mathcal{O})$ is a weakly compact convex set on which G acts by affine isometries. It follows by the Ryll-Nardzewski fixed point theorem [4] that G fixes a point on C, meaning that b must be a coboundary.

Every compact set $K \subseteq G$ determines a seminorm $\|\cdot\|_K$ on $Z^1(G,\pi)$ by $\|b\|_K = \sup_{g \in K} \|b(g)\|$ and the family of seminorms thus obtained endows $Z^1(G,\pi)$ with a locally convex topology. With this topology, one sees that a cocycle *b* belongs to the

The author's research was partially supported by NSF grants DMS 0901405 and DMS 1201295.

closure $B^1(G,\pi)$ if and only if the corresponding affine action $\alpha = (\pi, b)$ almost has fixed points, that is, if for any compact set $K \subseteq G$ and $\epsilon > 0$ there is some $x = x_{K,\epsilon} \in X$ verifying

$$\sup_{g\in K} \|\big(\pi(g)x+b(g)\big)-x\| = \sup_{g\in K} \|b(g)-\big(x-\pi(g)x\big)\| < \epsilon.$$

If, for any *K*, we can choose $x = x_{K,1}$ above to have arbitrarily large norm, we see that the supremum

$$\sup_{g \in K} \left\| \pi(g) \frac{x}{\|x\|} - \frac{x}{\|x\|} \right\| < \frac{\sup_{g \in K} \|b(g)\| + 1}{\|x\|}$$

can be made arbitrarily small, which means that the linear action π almost has invariant unit vectors. If, on the other hand, for some K the choice of $x_{K,1}$ is bounded (but non-empty), then the same bound holds for any compact $K' \supseteq K$, whereby we find that $b(G) \subseteq X$ is a bounded set, i.e., that $b \in B^1(G,\pi)$. Thus, this shows that if π does not almost have invariant unit vectors, the set $B^1(G,\pi)$ will be closed in $Z^1(G,\pi)$. In fact, if $b \in Z^1(G,\pi) \setminus B^1(G,\pi)$ and π does not almost have invariant unit vectors, then for any constant c there is a compact set $K \subseteq G$ such that no vector is $(\alpha(K), c)$ -invariant, where $\alpha = (\pi, b)$.

Conversely, a result of A. Guichardet [3], valid for locally compact σ -compact G, states that if π does not have invariant unit vectors and $B^1(G,\pi)$ is closed in $Z^1(G,\pi)$, then π does not almost have invariant unit vectors.

We define the *first cohomology group* of G with coefficients in π to be the quotient space $H^1(G,\pi) = Z^1(G,\pi)/B^1(G,\pi)$, while the *reduced cohomology group* is $\overline{H^1}(G,\pi) = Z^1(G,\pi)/\overline{B^1}(G,\pi)$.

2. Affine actions of product groups on reflexive spaces

In the following, let *X* be a reflexive Banach space, *G* and *H* be topological groups and π be a strongly continuous linear isometric representation of $G \times H$ on *X*. We also fix a cocycle $b \in Z^1(G \times H, \pi)$ and let α be the corresponding affine isometric action of $G \times H$ on *X*.

Proposition 1. One of the following must hold,

- (1) there is a $\pi(H)$ -invariant unit vector,
- (2) for any closed convex $\alpha(H)$ -invariant sets $C \subseteq X$, $\alpha|_G$ almost has fixed points on C.

Proof. Assume that there are no $\pi(H)$ -invariant unit vectors in X. Then, if $\pi^n : H \to GL(X^n)$ denotes the diagonal representation on $X^n = (X \oplus \ldots \oplus X)_2$, $\pi^n(H)$ has no invariant unit vectors on X^n . By reflexivity, for any $x \in X^n$, $C = \overline{\operatorname{conv}}(\pi^n(H)x)$ is a $\pi^n(H)$ -invariant weakly compact convex subset of X^n and thus, by the Ryll-Nardzewski fixed point theorem, $\pi^n(H)$ fixes a point on C, whereby $0 \in \overline{\operatorname{conv}}(\pi^n(H)x)$. Therefore, for any $\varepsilon > 0$ and $(y_1, \ldots, y_n) \in X^n$ there are $h_i \in H$ and $\lambda_i > 0$, $\sum_i \lambda_i = 1$, such that for all $k = 1, \ldots, n$,

$$\left\|\sum_{i}\lambda_{i}\pi(h_{i})y_{k}\right\|<\epsilon.$$

In particular, if $C \subseteq X$ is a closed convex $\alpha(H)$ -invariant set, $\epsilon > 0$ and $K \subseteq G$ compact, fix $y \in C$ and find $g_1, \ldots, g_n \in K$ such that $\{\alpha(g_1)y, \ldots, \alpha(g_n)y\}$ is $\frac{\epsilon}{2}$ -dense in $\alpha(K)y$. Choose now h_i and λ_i as above such that

$$\Big\|\sum_i \lambda_i \pi(h_i)(y-\alpha(g_k)y)\Big\| < \frac{\epsilon}{2}$$

for all k = 1, ..., n. Thus, if $g \in K$, pick k such that $\|\alpha(g)y - \alpha(g_k)y\| < \frac{\epsilon}{2}$. Then, since $\|\sum_i \lambda_i \pi(h_i)\| \le 1$,

$$\begin{split} \left\| \left(\sum_{i} \lambda_{i} \alpha(h_{i}) y \right) - \alpha(g) \left(\sum_{i} \lambda_{i} \alpha(h_{i}) y \right) \right\| &= \left\| \left(\sum_{i} \lambda_{i} \alpha(h_{i}) y \right) - \left(\sum_{i} \lambda_{i} \alpha(g) \alpha(h_{i}) y \right) \right\| \\ &= \left\| \left(\sum_{i} \lambda_{i} \alpha(h_{i}) y \right) - \left(\sum_{i} \lambda_{i} \alpha(h_{i}) \alpha(g) y \right) \right\| \\ &= \left\| \sum_{i} \lambda_{i} \left(\alpha(h_{i}) y - \alpha(h_{i}) \alpha(g) y \right) \right\| \\ &= \left\| \sum_{i} \lambda_{i} \left(\pi(h_{i}) y - \pi(h_{i}) \alpha(g) y \right) \right\| \\ &< \left\| \sum_{i} \lambda_{i} \pi(h_{i}) (y - \alpha(g) y) \right\| \\ &< \left\| \sum_{i} \lambda_{i} \pi(h_{i}) (y - \alpha(g_{k}) y) \right\| + \frac{\epsilon}{2} \\ &\leq \epsilon. \end{split}$$

In other words, the point $\sum_i \lambda_i \alpha(h_i) y \in C$ is $(\alpha(K), \epsilon)$ -invariant.

Corollary 2. Let G be a topological group and Z(G) its centre. Suppose π is a strongly continuous isometric linear representation on a reflexive Banach space X such that $\pi(Z(G))$ has no fixed unit vectors. Then $\overline{H^1}(G,\pi) = 0$, i.e., any affine isometric action with linear part π almost has fixed points on X.

Proof. Fix $b \in Z^1(G, \pi)$ and let $\alpha = (\pi, b)$ denote the corresponding affine action. Then α induces an affine action $\tilde{\alpha}$ of $G \times Z(G)$ on X by letting the first and second coordinate act separately via α . Since the linear part of $\tilde{\alpha}$ restricted to the second coordinate is simply $\pi|_{Z(G)}$, it follows by Proposition 1 that $\alpha = \tilde{\alpha}|_G$ almost has invariant vectors.

Corollary 2 applies in particular to linear representations of an abelian group *G* without fixed unit vectors. However, we should note that even this special case fails for more general Banach spaces, e.g., for ℓ_1 . To see this, let π denote the left regular representation of \mathbb{Z} on $\ell_1(\mathbb{Z})$ and let $b \in Z^1(\mathbb{Z}, \pi)$ be given by $b(n) = e_0 + e_1 + \ldots + e_{n-1}$. Then π has no invariant unit vectors. Also, if $x = \sum_{n=-k}^{k} a_n e_n$ is any finitely supported vector, we have

$$\begin{aligned} \|x - \alpha(1)x\| &= |a_{-k}| + |a_{-k+1} - a_{-k}| + \dots + |a_{-1} - a_{-2}| + |a_0 - a_{-1} + 1| \\ &+ |a_1 - a_0| + \dots + |a_k - a_{k-1}| + |a_k| \\ &\ge 1. \end{aligned}$$

So $||x - \alpha(1)x|| \ge 1$ for all $x \in \ell_1(\mathbb{Z})$ and $b \notin \overline{B^1(G, \pi)}$.

Corollary 3. If $\alpha(G \times H)$ has no fixed point on X and $\pi(G)$ and $\pi(H)$ no invariant unit vectors, then

- (1) $\alpha|_G$ and $\alpha|_H$ almost have fixed points, and
- (2) $\pi|_G$ and $\pi|_H$ almost have invariant unit vectors.

Proof. Item (1) follows directly from Proposition 1, which means that $b|_G \in B^1(G, \pi|_G)$ and $b|_H \in \overline{B^1(H, \pi|_H)}$. However, neither $\alpha(G)$ nor $\alpha(H)$ have fixed points, i.e., $b|_G \notin B^1(G, \pi|_G)$ and $b|_H \notin B^1(H, \pi|_H)$. For if, e.g., $\alpha(H)$ fixed a point $x \in X$, then $C = \{x\}$ would be a closed convex $\alpha(H)$ -invariant set on which $\alpha|_G$ would have almost fixed points, i.e., x would be fixed by $\alpha(G)$ and so x would be a fixed point for $\alpha(G \times H)$,

contradicting our assumptions. Thus, neither $B^1(G,\pi|_G)$ nor $B^1(H,\pi|_H)$ is closed, whereby (2) follows.

Corollary 4. Suppose $G = G_1 \times \ldots \times G_n$ is a product of topological groups and $\pi : G \to GL(X)$ is a linear isometric representation on a separable reflexive space X. Then X admits a decomposition into $\pi(G)$ -invariant linear subspaces $X = V \oplus Y_1 \oplus \ldots \oplus Y_n \oplus W$, such that

- (1) V is the space of $\pi(G)$ -invariant vectors,
- (2) any $b \in Z^1(G, \pi^{Y_i})$ factors through a cocycle defined on G_i ,
- (3) $Z^1(G,\pi^W) \subseteq \overline{B^1(G_1,\pi^W)} \oplus \ldots \oplus \overline{B^1(G_n,\pi^W)},$

where π^{W} denotes the restriction of π to the invariant subspace W and similarly for Y_{i} .

Proof. By Theorem 4.10 of [2], for any group of linear isometries of a separable reflexive space Y there is an invariant decomposition of Y into the subspace of fixed points and a canonical complement. Thus, by recursion on the size of $s \subseteq \{1, ..., n\}$, we obtain a $\pi(G)$ -invariant decomposition

$$X = \sum_{s \subseteq \{1, \dots, n\}} X_s$$

where every non-zero $x \in X_s$ is fixed by $\pi(\prod_{i \notin s} G_i)$ and by none of $\pi(G_i)$ for $i \in s$. So if $b \in Z^1(G, \pi^{X_s})$ and $g \in \prod_{i \notin s} G_i$, then for any $h \in \prod_{i \in s} G_i$,

$$b(h) + b(g) = \pi(g)b(h) + b(g) = b(gh) = b(hg) = \pi(h)b(g) + b(h),$$

i.e., $\pi(h)b(g) = b(g)$, which implies that b(g) = 0. It follows that if $s \neq \emptyset$, then any $b \in Z^1(G, \pi^{X_s})$ factors through a cocycle defined on $\prod_{i \in s} G_i$.

Also, if $|s| \ge 2$, then by Corollary 3 we see that any $b \in Z^1(G, \pi^{X_s})$ can be written as $b = b_1 \oplus \ldots \oplus b_n$, where $b_i \in \overline{B^1(G_i, \pi^{X_s})}$. Thus, if we set $V = X_{\emptyset}$, $Y_i = X_{\{i\}}$ and $W = \sum_{|s| \ge 2} X_s$, the result follows.

Proposition 1 was shown by Y. Shalom [5] in the special case of locally compact σ -compact G and H and $X = \mathcal{H}$ a Hilbert space, but by different methods essentially relying on the local compactness of G and H and the euclidean structure of X. This also provided the central lemma for the rigidity results of [5] via the following theorem, whose proof we include for completeness.

Theorem 5 (Shalom [5] for locally compact G and H). Let $\pi: G \times H \to GL(\mathcal{H})$ be a strongly continuous isometric linear representation of a product of topological groups on a Hilbert space \mathcal{H} and assume that neither $\pi(G)$ nor $\pi(H)$ have invariant unit vectors. Then $Z^1(G \times H, \pi) = \overline{B^1(G \times H, \pi)}$ and so $\overline{H^1(G \times H, \pi)} = 0$.

Proof. Let $b \in Z^1(G \times H, \pi)$ be given with corresponding affine isometric action α and fix compact subsets $K \subseteq G$, $L \subseteq H$ and an $\epsilon > 0$. Then, by Proposition 1, the closed convex $\alpha(G)$ -invariant set $C \subseteq \mathcal{H}$ of $(\alpha(L), \epsilon/2)$ -invariant points is non-empty. Similarly, there is an $(\alpha(K), \epsilon/2)$ -invariant point in \mathcal{H} .

Now, by the euclidean structure of \mathcal{H} , for any $y \in \mathcal{H}$, there is a unique point $P(y) \in C$ closest to y and, as $\alpha(G)$ acts by isometries on \mathcal{H} leaving C invariant, the map P is $\alpha(G)$ -equivariant, i.e., $P(\alpha(g)y) = \alpha(g)P(y)$. Moreover, using the euclidean structure again, P is 1-Lipschitz, whereby

$$||P(y) - \alpha(g)P(y)|| = ||P(y) - P(\alpha(g)y)|| \le ||y - \alpha(g)y||,$$

4

for all $y \in \mathcal{H}$ and $g \in G$. In particular, if $y \in \mathcal{H}$ is $(\alpha(K), \epsilon/2)$ -invariant, then P(y) is both $(\alpha(K), \epsilon/2)$ and $(\alpha(L), \epsilon/2)$ -invariant, i.e., P(y) is $(\alpha(K \times L), \epsilon)$ -invariant. Since K, L and ϵ are arbitrary, we have that $b \in \overline{B^1(G \times H, \pi)}$.

U. Bader, A. Furman, T. Gelander and N. Monod [1] studied the structure of affine actions of product groups on uniformly convex spaces (a subclass of the reflexive spaces) and in this setting obtained a slightly weaker result than Shalom. Namely, if $\pi: G \times H \to GL(X)$ is a strongly continuous isometric linear representation of a product of topological groups on a uniformly convex space X such that neither $\pi(G)$ nor $\pi(H)$ have invariant unit vectors, then either

- (a) π almost has invariant unit vectors, or
- (b) $Z^{1}(G \times H, \pi) = B^{1}(G \times H, \pi).$

Proposition 1 is somewhat independent of their statement and shows that one can add that $\alpha|_G$ and $\alpha|_H$ almost have fixed points to (a) above.

References

- [1] Bader, U., Furman, A., Gelander, T. & Monod, N., Property (T) and rigidity for actions on Banach spaces, Acta Math. 198 (2007), no. 1, 57-105.
- [2] Ferenczi, V. & Rosendal, C., On isometry groups and maximal symmetry, preprint.
- [3] Guichardet, A., Sur la cohomologie des groupes topologiques. II. Bull. Sci. Math., 96 (1972), 305–332.
- [4] Ryll-Nardzewski, C., Generalized random ergodic theorems and weakly almost periodic functions. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 271–275
- [5] Shalom, Y., Rigidity of commensurators and irreducible lattices. Invent. Math., 141 (2000), 1–54.

DEPARTMENT OF MATHEMATICS, STATISTICS, AND COMPUTER SCIENCE (M/C 249), UNIVERSITY OF ILLINOIS AT CHICAGO, 851 S. MORGAN ST., CHICAGO, IL 60607-7045, USA

E-mail address: rosendal.math@gmail.com *URL*:http://homepages.math.uic.edu/~rosendal