RIGIDITY OF COMMUTING AFFINE ACTIONS ON REFLEXIVE BANACH SPACES

CHRISTIAN ROSENDAL

Abstract

We give a simple argument to show that if α is an affine isometric action of a product $G \times H$ of topological groups on a reflexive Banach space X with linear part π, then either $\pi(H)$ fixes a unit vector or $\left.\alpha\right|_{G}$ almost fixes a point on X.

It follows that if π is an isometric linear representation of a topological group G on a reflexive space X such that $\pi(Z(G))$ has no fixed unit vectors, then the reduced cohomology vanishes, i.e., $\bar{H}^{1}(G, \pi)=0$.

1. LINEAR REPRESENTATIONS AND COCYCLES

When X is a vector space, the group of bijective affine transformations of X, $\operatorname{Aff}(X)$, can be decomposed as a semidirect product

$$
\operatorname{Aff}(X)=G L(X) \ltimes X,
$$

with respect to the natural action of $G L(X)$ on X. The product in $G L(X) \ltimes X$ is then simply $(T, x) \cdot(S, y)=(T S, T y+x)$, while the corresponding action of $(T, x) \in G L(X) \ltimes X$ on X is given by $(T, x) \cdot y=T y+x$.

Thus, an action α of a group G by affine transformations of the vector space X can be viewed as a homomorphism of G into $\operatorname{Aff}(X)$, which thus can be split into a linear representation $\pi: G \rightarrow G L(X)$, called the linear part of α, and an associated cocycle $b: G \rightarrow X$ such that the following cocycle identity holds,

$$
b(g f)=\pi(g) b(f)+b(g)
$$

for all $g, f \in G$.
If, moreover, X is a reflexive Banach space and $\pi: G \rightarrow G L(X)$ is a fixed isometric linear representation of a topological group G on X that is strongly continuous, i.e., such that for every $x \in X$ the map $g \in G \mapsto g x \in X$ is continuous, we can consider the corresponding vector space $Z^{1}(G, \pi)$ of continuous cocycles $b: G \rightarrow X$ associated to π. The subspace $B^{1}(G, \pi) \subseteq Z^{1}(G, \pi)$ consisting of those cocycles b for which the corresponding affine action α fixes a point on X, i.e., for which there is some $x \in X$ such that $b(g)=x-\pi(g) x$ for all $g \in G$, is called the set of coboundaries. Note that if b is a coboundary, then $b(G)$ is a bounded subset of X. Conversely, if $b(G)$ is a bounded set, then any orbit \mathscr{O} of the corresponding affine action is bounded and so, by reflexivity of X, its closed convex hull $C=\overline{\operatorname{conv}}(\mathscr{O})$ is a weakly compact convex set on which G acts by affine isometries. It follows by the Ryll-Nardzewski fixed point theorem [4] that G fixes a point on C, meaning that b must be a coboundary.

Every compact set $K \subseteq G$ determines a seminorm $\|\cdot\|_{K}$ on $Z^{1}(G, \pi)$ by $\|b\|_{K}=$ $\sup _{g \in K}\|b(g)\|$ and the family of seminorms thus obtained endows $Z^{1}(G, \pi)$ with a locally convex topology. With this topology, one sees that a cocycle b belongs to the

[^0]closure $\overline{B^{1}(G, \pi)}$ if and only if the corresponding affine action $\alpha=(\pi, b)$ almost has fixed points, that is, if for any compact set $K \subseteq G$ and $\epsilon>0$ there is some $x=x_{K, \epsilon} \in X$ verifying
$$
\sup _{g \in K}\|(\pi(g) x+b(g))-x\|=\sup _{g \in K}\|b(g)-(x-\pi(g) x)\|<\epsilon .
$$

If, for any K, we can choose $x=x_{K, 1}$ above to have arbitrarily large norm, we see that the supremum

$$
\sup _{g \in K}\left\|\pi(g) \frac{x}{\|x\|}-\frac{x}{\|x\|}\right\|<\frac{\sup _{g \in K}\|b(g)\|+1}{\|x\|}
$$

can be made arbitrarily small, which means that the linear action π almost has invariant unit vectors. If, on the other hand, for some K the choice of $x_{K, 1}$ is bounded (but non-empty), then the same bound holds for any compact $K^{\prime} \supseteq K$, whereby we find that $b(G) \subseteq X$ is a bounded set, i.e., that $b \in B^{1}(G, \pi)$. Thus, this shows that if π does not almost have invariant unit vectors, the set $B^{1}(G, \pi)$ will be closed in $Z^{1}(G, \pi)$. In fact, if $b \in Z^{1}(G, \pi) \backslash B^{1}(G, \pi)$ and π does not almost have invariant unit vectors, then for any constant c there is a compact set $K \subseteq G$ such that no vector is ($\alpha(K), c)$-invariant, where $\alpha=(\pi, b)$.

Conversely, a result of A. Guichardet [3], valid for locally compact σ-compact G, states that if π does not have invariant unit vectors and $B^{1}(G, \pi)$ is closed in $Z^{1}(G, \pi)$, then π does not almost have invariant unit vectors.

We define the first cohomology group of G with coefficients in π to be the quotient space $H^{1}(G, \pi)=Z^{1}(G, \pi) / B^{1}(G, \pi)$, while the reduced cohomology group is $\overline{H^{1}}(G, \pi)=$ $Z^{1}(G, \pi) / \overline{B^{1}(G, \pi)}$.

2. Affine actions of product groups on reflexive spaces

In the following, let X be a reflexive Banach space, G and H be topological groups and π be a strongly continuous linear isometric representation of $G \times H$ on X. We also fix a cocycle $b \in Z^{1}(G \times H, \pi)$ and let α be the corresponding affine isometric action of $G \times H$ on X.

Proposition 1. One of the following must hold,
(1) there is $a \pi(H)$-invariant unit vector,
(2) for any closed convex $\alpha(H)$-invariant sets $C \subseteq X,\left.\alpha\right|_{G}$ almost has fixed points on C.

Proof. Assume that there are no $\pi(H)$-invariant unit vectors in X. Then, if $\pi^{n}: H \rightarrow$ $G L\left(X^{n}\right)$ denotes the diagonal representation on $X^{n}=(X \oplus \ldots \oplus X)_{2}, \pi^{n}(H)$ has no invariant unit vectors on X^{n}. By reflexivity, for any $x \in X^{n}, C=\overline{\operatorname{conv}}\left(\pi^{n}(H) x\right)$ is a $\pi^{n}(H)$-invariant weakly compact convex subset of X^{n} and thus, by the RyllNardzewski fixed point theorem, $\pi^{n}(H)$ fixes a point on C, whereby $0 \in \overline{\operatorname{conv}}\left(\pi^{n}(H) x\right)$. Therefore, for any $\epsilon>0$ and $\left(y_{1}, \ldots, y_{n}\right) \in X^{n}$ there are $h_{i} \in H$ and $\lambda_{i}>0, \sum_{i} \lambda_{i}=1$, such that for all $k=1, \ldots, n$,

$$
\left\|\sum_{i} \lambda_{i} \pi\left(h_{i}\right) y_{k}\right\|<\epsilon
$$

In particular, if $C \subseteq X$ is a closed convex $\alpha(H)$-invariant set, $\epsilon>0$ and $K \subseteq G$ compact, fix $y \in C$ and find $g_{1}, \ldots, g_{n} \in K$ such that $\left\{\alpha\left(g_{1}\right) y, \ldots, \alpha\left(g_{n}\right) y\right\}$ is $\frac{\epsilon}{2}$-dense in $\alpha(K) y$. Choose now h_{i} and λ_{i} as above such that

$$
\left\|\sum_{i} \lambda_{i} \pi\left(h_{i}\right)\left(y-\alpha\left(g_{k}\right) y\right)\right\|<\frac{\epsilon}{2}
$$

for all $k=1, \ldots, n$. Thus, if $g \in K$, pick k such that $\left\|\alpha(g) y-\alpha\left(g_{k}\right) y\right\|<\frac{\epsilon}{2}$. Then, since $\left\|\sum_{i} \lambda_{i} \pi\left(h_{i}\right)\right\| \leqslant 1$,

$$
\begin{aligned}
\left\|\left(\sum_{i} \lambda_{i} \alpha\left(h_{i}\right) y\right)-\alpha(g)\left(\sum_{i} \lambda_{i} \alpha\left(h_{i}\right) y\right)\right\| & =\left\|\left(\sum_{i} \lambda_{i} \alpha\left(h_{i}\right) y\right)-\left(\sum_{i} \lambda_{i} \alpha(g) \alpha\left(h_{i}\right) y\right)\right\| \\
& =\left\|\left(\sum_{i} \lambda_{i} \alpha\left(h_{i}\right) y\right)-\left(\sum_{i} \lambda_{i} \alpha\left(h_{i}\right) \alpha(g) y\right)\right\| \\
& =\left\|\sum_{i} \lambda_{i}\left(\alpha\left(h_{i}\right) y-\alpha\left(h_{i}\right) \alpha(g) y\right)\right\| \\
& =\left\|\sum_{i} \lambda_{i}\left(\pi\left(h_{i}\right) y-\pi\left(h_{i}\right) \alpha(g) y\right)\right\| \\
& <\left\|\sum_{i} \lambda_{i} \pi\left(h_{i}\right)(y-\alpha(g) y)\right\| \\
& <\left\|\sum_{i} \lambda_{i} \pi\left(h_{i}\right)\left(y-\alpha\left(g_{k}\right) y\right)\right\|+\frac{\epsilon}{2} \\
& <\epsilon .
\end{aligned}
$$

In other words, the point $\sum_{i} \lambda_{i} \alpha\left(h_{i}\right) y \in C$ is ($\alpha(K), \epsilon$)-invariant.
Corollary 2. Let G be a topological group and $Z(G)$ its centre. Suppose π is a strongly continuous isometric linear representation on a reflexive Banach space X such that $\pi(Z(G))$ has no fixed unit vectors. Then $\overline{H^{1}}(G, \pi)=0$, i.e., any affine isometric action with linear part π almost has fixed points on X.

Proof. Fix $b \in Z^{1}(G, \pi)$ and let $\alpha=(\pi, b)$ denote the corresponding affine action. Then α induces an affine action $\tilde{\alpha}$ of $G \times Z(G)$ on X by letting the first and second coordinate act separately via α. Since the linear part of $\tilde{\alpha}$ restricted to the second coordinate is simply $\left.\pi\right|_{Z(G)}$, it follows by Proposition 1 that $\alpha=\left.\tilde{\alpha}\right|_{G}$ almost has invariant vectors.

Corollary 2 applies in particular to linear representations of an abelian group G without fixed unit vectors. However, we should note that even this special case fails for more general Banach spaces, e.g., for ℓ_{1}. To see this, let π denote the left regular representation of \mathbb{Z} on $\ell_{1}(\mathbb{Z})$ and let $b \in Z^{1}(\mathbb{Z}, \pi)$ be given by $b(n)=e_{0}+e_{1}+\ldots+e_{n-1}$. Then π has no invariant unit vectors. Also, if $x=\sum_{n=-k}^{k} a_{n} e_{n}$ is any finitely supported vector, we have

$$
\begin{aligned}
\|x-\alpha(1) x\|= & \left|a_{-k}\right|+\left|a_{-k+1}-a_{-k}\right|+\ldots+\left|a_{-1}-a_{-2}\right|+\left|a_{0}-a_{-1}+1\right| \\
& +\left|a_{1}-a_{0}\right|+\ldots+\left|a_{k}-a_{k-1}\right|+\left|a_{k}\right|
\end{aligned}
$$

$\geqslant 1$.
So $\|x-\alpha(1) x\| \geqslant 1$ for all $x \in \ell_{1}(\mathbb{Z})$ and $b \notin \overline{B^{1}(G, \pi)}$.
Corollary 3. If $\alpha(G \times H)$ has no fixed point on X and $\pi(G)$ and $\pi(H)$ no invariant unit vectors, then
(1) $\left.\alpha\right|_{G}$ and $\left.\alpha\right|_{H}$ almost have fixed points, and
(2) $\left.\pi\right|_{G}$ and $\left.\pi\right|_{H}$ almost have invariant unit vectors.

Proof. Item (1) follows directly from Proposition 1, which means that $\left.b\right|_{G} \in \overline{B^{1}\left(G,\left.\pi\right|_{G}\right)}$ and $\left.b\right|_{H} \in \overline{B^{1}\left(H,\left.\pi\right|_{H}\right)}$. However, neither $\alpha(G)$ nor $\alpha(H)$ have fixed points, i.e., $\left.b\right|_{G} \notin$ $B^{1}\left(G,\left.\pi\right|_{G}\right)$ and $\left.b\right|_{H} \notin B^{1}\left(H,\left.\pi\right|_{H}\right)$. For if, e.g., $\alpha(H)$ fixed a point $x \in X$, then $C=\{x\}$ would be a closed convex $\alpha(H)$-invariant set on which $\left.\alpha\right|_{G}$ would have almost fixed points, i.e., x would be fixed by $\alpha(G)$ and so x would be a fixed point for $\alpha(G \times H)$,
contradicting our assumptions. Thus, neither $B^{1}\left(G,\left.\pi\right|_{G}\right)$ nor $B^{1}\left(H,\left.\pi\right|_{H}\right)$ is closed, whereby (2) follows.

Corollary 4. Suppose $G=G_{1} \times \ldots \times G_{n}$ is a product of topological groups and $\pi: G \rightarrow$ $G L(X)$ is a linear isometric representation on a separable reflexive space X. Then X admits a decomposition into $\pi(G)$-invariant linear subspaces $X=V \oplus Y_{1} \oplus \ldots \oplus Y_{n} \oplus W$, such that
(1) V is the space of $\pi(G)$-invariant vectors,
(2) any $b \in Z^{1}\left(G, \pi^{Y_{i}}\right)$ factors through a cocycle defined on G_{i},
(3) $Z^{1}\left(G, \pi^{W}\right) \subseteq \overline{B^{1}\left(G_{1}, \pi^{W}\right)} \oplus \ldots \oplus \overline{B^{1}\left(G_{n}, \pi^{W}\right)}$,
where π^{W} denotes the restriction of π to the invariant subspace W and similarly for Y_{i}.

Proof. By Theorem 4.10 of [2], for any group of linear isometries of a separable reflexive space Y there is an invariant decomposition of Y into the subspace of fixed points and a canonical complement. Thus, by recursion on the size of $s \subseteq\{1, \ldots, n\}$, we obtain a $\pi(G)$-invariant decomposition

$$
X=\sum_{s \subseteq\{1, \ldots, n\}} X_{s}
$$

where every non-zero $x \in X_{s}$ is fixed by $\pi\left(\prod_{i \notin s} G_{i}\right)$ and by none of $\pi\left(G_{i}\right)$ for $i \in s$. So if $b \in Z^{1}\left(G, \pi^{X_{s}}\right)$ and $g \in \prod_{i \notin s} G_{i}$, then for any $h \in \prod_{i \in s} G_{i}$,

$$
b(h)+b(g)=\pi(g) b(h)+b(g)=b(g h)=b(h g)=\pi(h) b(g)+b(h),
$$

i.e., $\pi(h) b(g)=b(g)$, which implies that $b(g)=0$. It follows that if $s \neq \varnothing$, then any $b \in Z^{1}\left(G, \pi^{X_{s}}\right)$ factors through a cocycle defined on $\prod_{i \in s} G_{i}$.

Also, if $|s| \geqslant 2$, then by Corollary 3 we see that any $b \in Z^{1}\left(G, \pi^{X_{s}}\right)$ can be written as $b=b_{1} \oplus \ldots \oplus b_{n}$, where $b_{i} \in \overline{B^{1}\left(G_{i}, \pi^{X_{s}}\right)}$. Thus, if we set $V=X_{\phi}, Y_{i}=X_{\{i\}}$ and $W=\sum_{|s| \geqslant 2} X_{s}$, the result follows.

Proposition 1 was shown by Y. Shalom [5] in the special case of locally compact σ-compact G and H and $X=\mathscr{H}$ a Hilbert space, but by different methods essentially relying on the local compactness of G and H and the euclidean structure of X. This also provided the central lemma for the rigidity results of [5] via the following theorem, whose proof we include for completeness.

Theorem 5 (Shalom [5] for locally compact G and H). Let $\pi: G \times H \rightarrow G L(\mathscr{H})$ be a strongly continuous isometric linear representation of a product of topological groups on a Hilbert space \mathscr{H} and assume that neither $\pi(G)$ nor $\pi(H)$ have invariant unit vectors. Then $Z^{1}(G \times H, \pi)=\overline{B^{1}(G \times H, \pi)}$ and so $\overline{H^{1}}(G \times H, \pi)=0$.

Proof. Let $b \in Z^{1}(G \times H, \pi)$ be given with corresponding affine isometric action α and fix compact subsets $K \subseteq G, L \subseteq H$ and an $\epsilon>0$. Then, by Proposition 1 , the closed convex $\alpha(G)$-invariant set $C \subseteq \mathscr{H}$ of ($\alpha(L), \epsilon / 2$)-invariant points is non-empty. Similarly, there is an ($\alpha(K), \epsilon / 2)$-invariant point in \mathscr{H}.

Now, by the euclidean structure of \mathscr{H}, for any $y \in \mathscr{H}$, there is a unique point $P(y) \in C$ closest to y and, as $\alpha(G)$ acts by isometries on \mathscr{H} leaving C invariant, the $\operatorname{map} P$ is $\alpha(G)$-equivariant, i.e., $P(\alpha(g) y)=\alpha(g) P(y)$. Moreover, using the euclidean structure again, P is 1-Lipschitz, whereby

$$
\|P(y)-\alpha(g) P(y)\|=\|P(y)-P(\alpha(g) y)\| \leqslant\|y-\alpha(g) y\|
$$

for all $y \in \mathscr{H}$ and $g \in G$. In particular, if $y \in \mathscr{H}$ is ($\alpha(K), \epsilon / 2$)-invariant, then $P(y)$ is both $(\alpha(K), \epsilon / 2)$ and ($\alpha(L), \epsilon / 2$)-invariant, i.e., $P(y)$ is $(\alpha(K \times L), \epsilon)$-invariant. Since K, L and ϵ are arbitrary, we have that $b \in \overline{B^{1}(G \times H, \pi)}$.
U. Bader, A. Furman, T. Gelander and N. Monod [1] studied the structure of affine actions of product groups on uniformly convex spaces (a subclass of the reflexive spaces) and in this setting obtained a slightly weaker result than Shalom. Namely, if $\pi: G \times H \rightarrow G L(X)$ is a strongly continuous isometric linear representation of a product of topological groups on a uniformly convex space X such that neither $\pi(G)$ nor $\pi(H)$ have invariant unit vectors, then either
(a) π almost has invariant unit vectors, or
(b) $Z^{1}(G \times H, \pi)=B^{1}(G \times H, \pi)$.

Proposition 1 is somewhat independent of their statement and shows that one can add that $\left.\alpha\right|_{G}$ and $\left.\alpha\right|_{H}$ almost have fixed points to (a) above.

References

[1] Bader, U., Furman, A., Gelander, T. \& Monod, N., Property (T) and rigidity for actions on Banach spaces, Acta Math. 198 (2007), no. 1, 57-105.
[2] Ferenczi, V. \& Rosendal, C., On isometry groups and maximal symmetry, preprint.
[3] Guichardet, A., Sur la cohomologie des groupes topologiques. II. Bull. Sci. Math., 96 (1972), 305-332.
[4] Ryll-Nardzewski, C., Generalized random ergodic theorems and weakly almost periodic functions. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 271-275
[5] Shalom, Y., Rigidity of commensurators and irreducible lattices. Invent. Math., 141 (2000), 1-54.
Department of Mathematics, Statistics, and Computer Science (M/C 249), University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607-7045, USA

E-mail address: rosendal.math@gmail.com
URL: http://homepages.math.uic.edu/~rosendal

[^0]: The author's research was partially supported by NSF grants DMS 0901405 and DMS 1201295.

